

36TH PCSI CONFERENCE

Assessing funding inequalities between elective and urgent surgeries of the musculoskeletal system in French funding mechanisms

May 2024

ATIH - FRANCE

INTRODUCTION

- 1. Scope and aim of the study
- 2. Major Diagnostic Category (MDC) selection

What is the scope and aim of the study?

A/Scope

We worked with the entire French hospital's activity

The study focus on medical surgical and obstetrics (MSO) activity

B/ Aim of study

There is a consensus In France that having a large proportion of unplanned activity is a "burden" for hospitals

- An unplanned hospital stay is on average longer and more severe than a planned stay
- The unplanned stays are mostly taken care of in some hospitals
 - These hospitals can't treat as many patients as they could, with similar capacities
- . The funding for a hospital stay does not consider whether it is planned or not in the French funding system
- The aim of the study is to find a way to assess the impact of unplanned activity in order to better fund these hospitals in the future

36TH PCSI CONFERENCE

MDC selection

Major diagnostic category selection

We sorted each homogeneous hospital stay group (~DRG) among planned, unplanned and blended

We mixed a statistical and medical analysis

B/ Major category diagnostic

Activity categorized by major diagnostic category

- By body part (ex: head, heart and circulatory system, musculoskeletal system...)
- Subcategories => Major procedure (yes or no) (medical, surgery)

C/ Three MDC categories

Each MDC has been sorted in one of the following categories according to the DRG mix:

- Planned MDC: Majority of planned hospital stays. Every hospital has mostly planned hospital stays (e.g., eye disorder surgery MDC)
- · Mixed MDC: Mix of planned and unplanned hospital stays. Each hospital has a different proportion of planned and unplanned activity (e.g., musculoskeletal system disorder MDC)
 - Some hospitals have mostly planned surgery whereas others have mostly unplanned surgery
- Unplanned MDC: Majority of unplanned hospital stay. Every hospital has mostly unplanned hospital stay (e.g., nonsurgical respiratory system pathologies)

Major diagnostic category selection

D/ Focus of the study

We focused on mixed MDC because :

- · Any hospital that can perform urgent surgeries could also perform elective surgeries with similar material and staff
- The unplanned stays are mostly taken care of in some hospitals when others only do planned stays

The idea is to assess the unplanned activity impact on the hospitals

- We assessed the unplanned activity impact at the MDC level
- To do so, we substituted non planned activities by planned activities in the hospital case-mix
 - Every hospitals have, at least some planned activity, in their case-mix
 - Similar capacities (staff and materials) could be used in the same MDC to do urgent and elective surgeries

36TH PCSI CONFERENCE

ASSESSING FUNDING INEQUALITIES BETWEEN ELECTIVE AND URGENT SURGERIES

- 1. Observations and description
- 2. Methodology n°1 « Optimum »
- 3. Methodology n°2 « bed-blockers »

Observations

Observations

- Unplanned surgery's length of stay (LOS) > Planned surgery's LOS
- Unplanned surgery's daily funding < Planned surgery's daily funding
- Hospitals with mostly urgent surgeries
 - Can't plan urgent surgeries (unpredictability and unknown LOS)
 - Hard to optimize occupancy rate
 - In an activity-based funding system : Loss of funding revenue
- Hospitals with mostly elective surgeries
 - Easier to optimize occupancy rate
 - In an activity-based funding : Optimized funding revenue

36TH PCSI CONFERENCE

Description 08C

Mixed MDC description

MDC	Number of stays 2022			Average length of stay 2022 (in days)			Average fundind per stay (in €)*		
	Planned	Blended	Unplanned	Planned	Blended	Unplanned	Planned	Blended	Unplanned
Musculoskelet al system surgery	833 853	374 829	315 480	2.80	2.71	6.81	3 573	2 883	5 112
Digestive tract disorders surgery	312 412	112 027	79 503	2.05	11.76	5.17	2 073	9 531	3 910
Hepatobiliary system and pancreas disorders surgery	81 549	22 080	27 123	1.96	11.96	6.14	2 639	11 780	4 594
Heart and circulatory system surgery	70 484	156 680	16 651	1.56	9.35	12.10	1 569	9 901	8 787

Methodology n°1 « Optimum »

A/ Methods

Assessing the unplanned surgery impact on a given hospital for a major diagnostic category (e.g. musculoskeletal system surgery)

Calculate the hospital funding as if the entire activity was planned

- We created a standard planned stay for each hospital as a reference*
- We switched every unplanned and blended hospital stays to the standard planned stay
 - The amount of hospital-bed days remains unchanged

- Nbr planned stay added = $\frac{Nbr \text{ unplanned stay} * LOS \text{ unplanned}}{Nbr \text{ planned stay}} + \frac{Nbr \text{ blended stay} * LOS \text{ blended}}{Nbr \text{ planned stay}}$ LOS standard planned
- We added more planned stay than there was unplanned stay because LOS unplanned > LOS standard planned
- We calculated the hospital funding with this new stay's distribution
- We calculated an unplanned impact ratio by dividing the "new calculated" funding by the real hospital funding for the same activity

^{*}See appendix for standard hospital stay's definition

36TH PCSI CONFERENCE

Methodology

Methodology n°1 « Optimum »

B/ Simplified example

An hospital has 9 stays in the musculoskeletal system surgery divided between two diagnosis groups

- Stays A: 3 unplanned stays in the first diagnosis group (average LOS = 7 days, average funding =5,000€)
- Stays B: 6 planned stays in the second diagnosis group (average LOS = 3,5 days, average funding =3,500€)
- Standard planned stays for the hospital
 - A stay of the second diagnosis group with the national LOS and average funding (LOS = 3 days, average funding =3500€)
- Hospital funding = Stays A funding + Stays B funding = (3*5,000) + (7*3,500) = 36,000 €

Method applied

• Stays A => turn into standard planned stays (LOS =3 days, funding per stay =3500€)
$$Nbr\ planned\ stay\ added = \frac{Nbr\ stay\ A*average\ LOS\ A}{LOS\ standard\ planned} = \frac{3*7}{3} = 7\ stays$$

- Stays B => remains unchanged (funding =21 000€)
- New funding is :

Unplanned impact ratio = 45 500/36 000 = 1,26

Methodology n°2 « Bed-blockers »

A/ Methods

Calculate the hospital funding as if urgent surgery's stays had the same length of stay as elective ones

- How many more planned stays could a hospital do if urgent surgery's stays had the same length of stay as elective
 ones
 - As if the hospital did not suffer from different length of stay between planned and unplanned or blended stays
 - The amount of hospital-bed days remains unchanged

How many more planned hospital stay the hospital could do ? And how many unplanned hospital stays are left ?

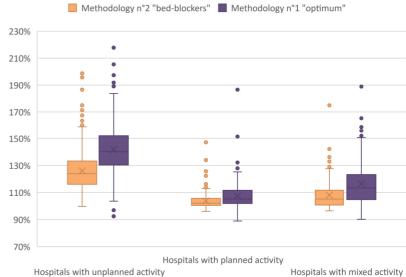
 $\begin{array}{l} \bullet \ Nbr \ planned \ stay \ added = \frac{\textit{Nbr unplanned stay *(LOS unplanned-LOS standard planned)}}{\textit{LOS standard planned}} + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{LOS standard planned}} \end{array} \\ + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{LOS standard planned}} + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}} + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}} + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}} + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}} + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}} + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}} + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}} + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}} + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}} + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}} + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}} + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}} + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}} + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}} + \frac{\textit{Nbr blended stay *(LOS blended-LOS standard planned)}}{\textit{Nbr blended stay *(LOS b$

• New nbr unplanned stays = $\frac{Nbr \ unplanned \ stay *LOS \ standard \ planned}{LOS \ unplanned}$

Same methods as the methodology n°1 for the rest of the methodology

Results

Three hospitals categories


- Three hospitals categories are created according to the proportion of unplanned, planned and blended activities*
- The hospitals with many unplanned activities have bigger impact ratio
- The methodology "optimum" gives on average bigger impact ratio than the methodology "bed-blockers"
- The impact ratios are highly correlated between the two methodologies

*See appendix 1 for more details about these groups

36TH PCSI CONFERENCE

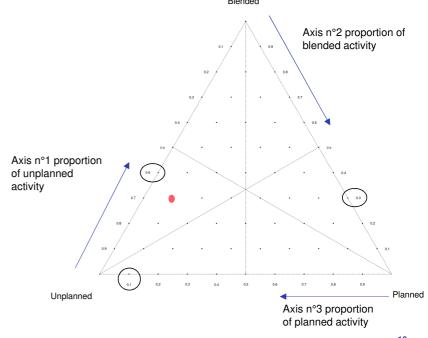
Unplanned impact ratio distribution according to the hospital category

.

Results

How these results could be used in the funding?

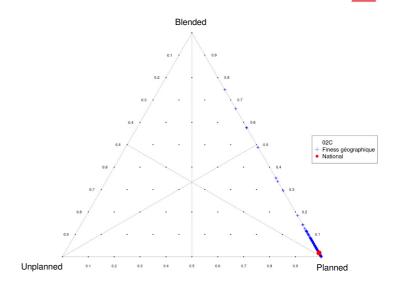
- An endowment could be created to better fund hospitals with a large proportion of unplanned activity
- This new endowment could be distributed among hospitals with the results of the study
 - The larger the impact ratio the largest the hospital endowment would be
 - Giving bigger fundings to the hospitals with a greater impact from urgent surgeries


Appendix 1 (1/3)

Graphic representation of hospitals in each MDC

A/How to read triangles graphics

- Each hospital, with activity within the given MDC, is represented by a colored dot in the triangle
- The hospital position depends on the repartition of the activity among the diagnosis group's categories
- Example for one hospital represented by the red dot
 - 60% of unplanned activity
 - 10% of planned activity
 - 30% of blended activity



Focus planned MDC

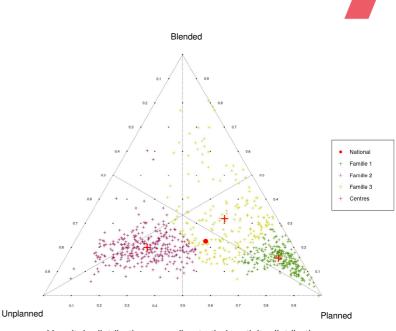
A/Characteristics

- All hospitals have mostly planned activities in the MDC
- Ex : Eye disorder surgery
 - No urgent DRG in this MDC
 - All the hospitals do a majority of elective surgery in this MDC

Hospitals distribution according to their activity distribution among planned, unplanned and blended activity for the eye disorder surgery (02C)

36TH PCSI CONFERENCE

Appendix 1 (3/3)


Mixed MDC

A/Characteristics

- · Hospitals have various profiles in the MDC
 - Some have mostly unplanned activities
 - Other have mostly planned activities

Ex : Musculoskeletal system surgery (08C). Three types of hospitals profile

- N°1 (green dots on the graph): 33% of hospitals with mostly planned activities
- N°2 (purple dots on the graph): 40% of hospitals with mostly unplanned activities
- N°3 (yellow dots on the graph): 28% of hospitals with a mix of planned, unplanned and blended activities

Hospitals distribution according to their activity distribution among planned, unplanned and blended activity for the musculoskeletal system disorder surgery

36TH PCSI CONFERENCE

18

Appendix 2 (1/2): Methodology n°2 « Bed-blockers »

A/ Simplified example

An hospital has 10 stay in the musculoskeletal system surgery divided between two diagnosis groups

- Stays A: 3 unplanned stays in the first diagnosis group (average LOS = 7 days, average funding =5000€)
- Stays B: 7 planned stays in the second diagnosis group (average LOS = 3,5 days, average funding =3500€)
- Standard planned stays for the hospital
 - A stay of the second diagnosis group with the national LOS and average funding (LOS = 3 days, average funding =3500€)
- Hospital funding = Stays A funding + Stays B funding = (3*5000) + (7*3500) = 39 500 €

36TH PCSI CONFERENCE

Appendix 2

Appendix 2 (2/2): Methodology n°2 « Bed-blockers »

Method applied

Stays A:

Nbr planned stay added =
$$\frac{Nbr \ unplanned \ stay \ * (LOS \ unplanned - LOS \ standard \ planned)}{LOS \ standard \ planned} = \frac{3*(7-3)}{3} = 4 \ s\'{e}jours$$

New number of unplanned stays

New nbr stays
$$A = \frac{Nbr \, stay \, A * LOS \, standard \, planned}{LOS \, stays \, A} = \frac{3*3}{7} = 1,29 \, s\'{e}jours$$

- Stays B => remains unchanged (funding =24 500€)
- · New funding is:

New funding = Stays B funding + Nbr planned stay added
$$\frac{1}{8}$$
 standard planned funding + New nbr stays A $\frac{1}{8}$ stays A funding = 24 500 + 4 * 3 500 + 1,29 * 5 000 = 42 388,89€

Unplanned impact ratio = 42 388,89/39 500 = 1,07

Standard planned

We calculated one standard planned activity for each hospital

We used this activity in both methodologies

What is the standard planned activity for a given hospital

- Step 1 : We considered the planned case-mix of the hospital (In a given MDC)
 - This activity can be done in this hospital
 - A hospital can not do all unplanned activity possible

LOS et average national funding

- Step 2: Given the case-mix from step 1 we considered the LOS and national average funding of each homogeneous hospital stay
 - The aim is to not encourage longer stays in the hospital

36TH PCSI CONFERENCE 2

THANK YOU!